Аэробная и анаэробная производительность организма. Аэробная и анаэробная производительность. Продолжительная анаэробная рабочая производительность

Природа предоставила нам возможность работать и в условияхнедостаточного снабжения тканей кислородом . При нехватке кислорода различают две реакции восстановления АТФ:

  • алактатную ) , т.е. без образования молочной кислоты(лактат – молочная кислота) ;
  • лактатную , т.е. с ее образованием.

Первая реакция (анаэробная алактатная ) – распад особого химического соединения –креатинфосфатной кислоты (КрФ), обеспечивающий быстрое восстановление АТФ. Однако запасы КрФ также ограничены и при максимально интенсивной работе быстро (в течение 10 сек) исчерпываются.

Вторая реакция (анаэробная лактатная ) – восстановление АТФ за счет энергии, образующейся при распадегликогена.

Анаэробная производительность (анаэробные возможности организма) – это способность человека работать в условиях недостатка кислорода за счет анаэробных источников энергии. Она зависит от ряда факторов (см. рис. 1).

Увеличение количества гликогена в мышцах

Увеличение количества креатинфосфата в мышцах

Анаэробная

производительность

Возрастание активности ферментных систем, катализирующих анаэробные реакции

Повышение устойчивости организма к высокой концентрации молочной кислоты в мышцах и крови

Рис. 1. Факторы, обеспечивающие анаэробную производительность организма (по В.М.Волкову, Е.Г.Мильнеру, 1987).

В процессе распада глюкозы образуется (при недостатке кислорода) молочная кислота. Накопление молочной кислоты в организме приводит к изменениюкислотно-щелочного равновесия (рН). Когда в организме накапливается слишком большое количество кислых продуктов обмена веществ, человек вынужден прекратить работу.

Для ликвидации этих продуктов также нужен кислород, ибо они разрушаются путем окисления. Но окисление это может происходить уже после окончания работы, ввосстановительный период .

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называетсякислородным долгом .

Кислородный долг главнейший показатель анаэробной производительности . Максимальный кислородный долг у людей, не занимающихся спортом, не превышает 4–5 л. У спортсменов высокого класса он может достигать 10–20 л.

Различают две части кислородного долга:алактатную илактатную.

Алактатная часть может составлять у спортсменов 2–4 л. Она идет на восстановление КрФ, отдавшего свою энергию ресинтезу АТФ, а также на восстановление израсходованных при работе запасов АТФ в мышцах.

Лактатная , большаячасть кислородного долга идет на ликвидацию накопившейся при работе в мышцах и крови молочной кислоты, которая в восстановительном периоде частично окисляется, частично используется при образовании запасов углеводов в печени и мышцах.

Содержание молочной кислоты у спортсменов высокого класса может доходить до 300 мг в 100 мл крови (в покое – 10–15 мг). Чтобы продолжать при этом работу, организм должен иметь мощныебуферные системы . У спортсменов мощность буферных систем крови и других тканей повышена. Но все же буферные системы не всегда могут полностью нейтрализовать кислые продукты обмена веществ, поступающие в кровь. Тогда происходит сдвиг рН крови вкислую сторону. Чтобы человек мог выполнять работу значительной мощности в условиях резких изменений внутренней среды организма, его ткани должны быть приспособлены к работе при недостатке кислорода и низком рН. Такое приспособление тканей служит одним из главных факторов, обеспечивающих высокую анаэробную производительность. Кроме того, способность человека работать при большом количестве накопившейся молочной кислоты во многом зависит и от кровоснабжения мозга и сердца. Эти органы должны получать достаточно кислорода даже в тех условиях, когда скелетные мышцы испытывают его дефицит.

Порог анаэробного обмена. При большой интенсивности бега дальнейшее увеличение скорости происходит за счет анаэробных источников энергии. Однако анаэробные процессы при беге включаются в восстановление АТФ не в тот момент, когда достигнут максимальный уровень потребления кислорода (МПК), а несколько раньше. Появление в организме первых признаков анаэробного ресинтеза АТФ называютпорогом анаэробного обмена (ПАНО). Измеряется ПАНО в процентах от МПК. У спортсменов разной квалификации ПАНО равен 50–70 % от уровня максимального потребления кислорода. Это значит, что анаэробный ресинтез АТФ начинается, когда потребление кислорода достигает 50–70 % от МПК данного человека. Чем выше ПАНО, тем более тяжелую работу спортсмен выполняет, восстанавливая АТФ за счет более экономных аэробных источников энергии .

Кислотно-щелочное равновесие и буферные зоны. В плазме крови содержатся ионы водорода. Они входят в состав всех кислот, и поэтому от их концентрации в крови зависит еекислотность. Для характеристики кислотности крови пользуются водородным показателем, обозначаемымрН (водородный показатель – логарифм концентрации водородных ионов, взятый с обратным знаком). Для дистиллированной воды величина рН составляет 7,07; кислая среда имеет рН меньше, щелочная – больше. Водородный показатель артериальной крови в среднем равен 7,4, венозной – несколько меньше. Это означает, что кровь имеетслабокислую реакцию . При физической работе в плазму крови попадает большое количество кислых продуктов обмена веществ. Однако при самой тяжелой работе рН крови не падает ниже 7,0. При большом сдвиге рН крови в кислую сторону человек вынужден прекратить работу.

Кислотно-щелочное равновесие в крови и тканях обеспечивается наличием в них особых веществ, образующих буферные системы. Существует несколько буферных систем:

  • карбонатная система , деятельность которой обусловлена угольной кислотой и ее солями;
  • фосфатная система , в состав которой входят соли фосфорной кислоты;
  • буферная система белков плазмы ;
  • буферная система гемоглобина (ей принадлежит самая большая роль, так как она обеспечивает около 75 % буферной способности крови).

К примеру, если в кровь поступает какая-либокислота , более сильная, чем угольная (например, молочная), она вступает в реакцию с бикарбонатом. В результате образуется соль этой кислоты и угольная кислота, которая расщепляется на СО 2 и Н 2 О. Углекислота выделяется из организма через легкие, что обеспечивает сохранение рН крови на постоянном уровне. Если в кровь поступаютщелочные продукты , то они связываются кислотами буферных систем. Это предохраняет организм от сдвига рН крови и тканей в щелочную сторону.

Щелочи буферных систем крови, способные связывать кислоты, образующиеся в процессе обмена веществ, называютсящелочным резервом . Он определяется количеством углекислого газа (вмл ), находящегося в химически связанном состоянии (т.е. в виде Н 2 СО 3 и NаHCO 3) в 100 мл плазмы крови. У здорового человека этот показатель равен 50–65 мл.

Постоянство рН тканей и крови обеспечивается легкими (освобождение организма от углекислого газа), почками и потовыми железами.

При интенсивной физической работе в кровь поступает значительное количество недоокисленных продуктов обмена, с повышением мощности работы их количество увеличивается. Например, содержание молочной кислоты может достигать 200–250 мг в 100 мл крови, т.е. увеличиться в 20–25 раз по сравнению с состоянием покоя.

Занятия оздоровительным бегом повышают возможности буферных систем крови и тканей.

В спорте определению аэробных возможностей придается исключительное значение. Многие видные отечественные и зарубежные исследователи изучали различные показатели, характеризующие аэробную производительность спортсменов.

Одним из важных показателей аэробных возможностей, своего рода энергетическим критерием работоспособности спортсменов, является величина максимального потребления кислорода (МПК). Предельное потребление кислорода определяется, как правило, при достаточно интенсивной и продолжительной мышечной деятельности, например езде на велоэргометре. Этот надежный показатель мощности аэробного процесса отражает эффективность взаимодействия основных систем организма, в первую очередь дыхательной, сердечнососудистой и кровеносной. Одними из первых МПК у квалифицированных спортсменов определили лауреат Нобелевской премии А. Хилл и X. Луптон в 1923 г. Они получили невероятную для того времени величину - более 4 л/мин. А. Хилл допустил, что достичь МПК, равного 5 л/мин и более, вообще невозможно. Но этот прогноз не оправдался.

Так, выдающиеся бегуны на средние и длинные дистанции могли потреблять 80-85 мл кислорода в 1 мин По данным Р. Астранда, МПК у бегунов на средние н длинные дистанции - членов сборной команды Швеции составило соответственно 75 и 79 мл/кг/мин У выдающихся советских хоккеистов В. Харламова, Г. Цыганкова, Е. Мишакова этот показатель также был более /и мл/кг/мин. Спортсмены средней квалификации не обладают столь высоким кислородным потолком. Их уровень в диапазоне 2-3 л/мин.

Максимальный уровень потребления кислорода достигается благодаря предельной мобилизации дыхательной, сердечнососудистой, кровеносной систем. «Подъем» на эти вершины происходит в процессе многолетнего спортивного совершенствования. Установлено, что в результате тренировки выносливости МПК может увеличенные возможности, особенно в упражнениях на выносливость.

МПК является «авторитетным» показателем физической работоспособности и в качестве такового рекомендован комитетом по Международной биологической программе. Но при этом надо помнить, что функциональный потолок в виде МПК - это не постоянный счет в банке, который всегда можно реализовать; он требует дополнительных вложений - постоянных занятий физическими упражнениями, преимущественно высокой интенсивности. В противном случае «сбережения» организма будут таять.

Установлена важная роль внешнего дыхания в обеспечении организма кислородом. Высокий уровень потребления кислорода достигается при 50-80 дыхательных движениях в 1 мин., при этом глубина дыхания составляет 2-3 л. Таким образом, вентиляция легких может достигать 180-200 л/мин. Бегуны на длинные дистанции высокой квалификации способны поддерживать при напряженном беге легочную вентиляцию на уровне 120 л/мин и выше в течение более чем 20 мин. Спортивная тренировка повышает функциональную мощность дыхательного аппарата.

Существенным фактором, определяющим потребление кислорода, является система крови. У спортсменов на 1 кг веса тела приходится 80 мл крови, что несколько выше по сравнению с не занимающимися спортом. Помимо этого, кровь спортсменов обладает повышенной способностью связывать во время работы большое количество кислорода (у спортсменов каждый литр крови связывает 230-250 мл кислорода, а у не спортсменов - лишь 170- 190 мл). Этому способствует увеличение концентрации гемоглобина крови, а также выход во время работы депонированной крови. В результате увеличивается кислородная емкость крови, составляющая у спортсменов 20- 25 объемных процентов.

Исследованиями последних лет показано, что основным звеном, ограничивающим максимально возможный уровень потребления кислорода, является сердечнососудистая система. Чем полнее сердце снабжают работающие мышцы кровью, тем лучше осуществляется ресинтез АТФ за счет более выгодных окислительных процессов. Этому также способствует изменение просвета кровеносных сосудов, увеличение числа капилляров в мышцах, перераспределение крови в организме. В результате кровоснабжение активно работающих органов (например, сердца) и мышц увеличивается, а доставка кислорода усиливается.

Таким образом, МПК определяется сложной системой органов, различными процессами и реакциями. Согласованная деятельность этого сложного «ансамбля» обеспечивается посредством нервной и гуморальной регуляции.

Не «подрывая авторитета» МПК как влиятельного представителя мышечной работоспособности, ряд исследователей отмечают и его слабые места. Как уже указывалось выше, кислородный потолок организма определяется огромной суммой процессов и реакций. В результате МПК может недостаточно полно отражать степень участия отдельных его составляющих, а порой и маскировать некоторые менее совершенные механизмы, слабо работающие системы.

Не случайно поэтому ряд ученых говорит о том, что к оценке работоспособности, по данным МПК, следует относиться осторожно. В спортивной практике нередко ведущие бегуны, лыжники показывают сходные результаты при существенных различиях в МПК. Так, у выдающихся бегунов на длинные дистанции Ф. Шостера и С. Префонтена результат в беге на 5000 м составляет 12,52, при этом МПК первого равнялось 71,4 мл/кг/мин, а второго на 13 мл/кг/мин было выше. Предполагают для повышения информативности МПК оценивать его в связи со спортивным результатом и техникой выполнения движений, а также со способностью эффективно расходовать энергию и психологическими факторами.

Итак, высокий МПК еще не гарантирует успех на беговой дорожке или лыжне. Дело в том, что различные спортсмены используют аэробные возможности во время напряженной мышечной деятельности неодинаково. Установлено, что одни бегуны-марафонцы используют аэробные возможности на 75-80%, а другие -на 85- 90%. Утверждают также, что необходимо оценивать не только «вершину» аэробного обмена, т. е. МПК, но, главное, способность удерживать высокий уровень потребления кислорода на протяжении всей работы. В настоящее время пытаются учитывать и другое. Оказалось, что работоспособность в немалой степени определяется эффективностью окислительных процессов в самой мышце, например в митохондриях - «силовых станциях» клетки, ответственных за образование большей части энергии. Имеются данные о том, что под влиянием спортивной тренировки увеличивается как количество митохондрий, так и эффективность их деятельности. Это обеспечивает лучшее использование кислорода.

Несмотря на солидные исследования, кислородная «служба» организма изучена все же недостаточно. Необходимо еще много сделать, прежде чем дать спортсменам и тренерам исчерпывающий ответ о наиболее эффективных путях и средствах развития аэробной производительности.

Природа «приковала» человека к атмосферному кислороду. Она наделила человека крайне скудными возможностями резервировать, откладывать «про запас» кислород. В крови 1160 мл, в легких 900 мл, в межтканевых пространствах и мышцах около 600 мл кислорода. Мышцы при интенсивной деятельности «пожирают» эти запасы за несколько секунд.

Вместе с тем природа подарила человеку удивительную способность работать в долг, в условиях кислородного дефицита, когда ткани испытывают гипоксию (кислородный голод). Способность работать в долг (анаэробные возможности) зависит от многих факторов: от запасов анаэробных источников энергии, силы биологических ускорителей - ферментов, от компенсаторных реакций, противодействующих кислородному голоданию, от устойчивости различных тканей к недостатку кислорода.

Одним из показателей анаэробных возможностей является величина максимального кислородного долга (МКД), т. количества кислорода, которое организм недополучает во время интенсивной мышечной деятельности. Чем больше организм способен «забирать в долг», тем выше его способность работать при острой нехватке кислорода. Считают, что если величина МПК является отражением мощности аэробного процесса, то данные предельного кислородного долга могут служить показателем емкости (т. е. общего количества освобождаемой энергии) анаэробных источников энергии.

Одним из первых определил наибольшую величину МКД, равную 18,7 л, английский физиолог А. Хилл. Последующие исследования показали, что это далеко не предел. Оказалось, что можно выполнить напряженную спортивную деятельность при кислородной задолженности 20-23 л. Несомненно, что подобный кислородный долг доступен только спортсменам высокого класса: у мастеров международного класса - 22,8 л, а у спортсменов I и II разрядов соответственно 19,94 и 18,51 л. У не занимающихся спортом кислородный долг не превышает 4-7 л (Н. И. Волков).

Большая величина кислородного долга была установлена у бегунов на средние дистанции: у бегунов на 400 м - 21,54, на 800 м - 20,9 и на 1500 м - 20,62 л.

Еще в 30-х годах нашего столетия было показано, что две фракции кислородного долга имеют различную природу. Первая, алактатная, связана с ресинтезом фосфорсодержащих соединений (АТФ, К.ТФ); вторая, лактатная,- с окислительным устранением молочной кислоты. Причем оплата лактатного кислородного долга происходит примерно в 40-50 раз медленнее, чем ликвидация алактатного кислородного долга. При значительном накоплении молочной кислоты в условиях напряженной деятельности лактатный долг может достигать у спортсменов 8-13 л (120-230 мл на 1 кг веса).

Исследования размеров и «скорости оплаты» лактатного и алактатного кислородного долга представляют не только теоретический интерес, но и важны для определения путей направленного развития выносливости в разных видах спорта. Для оценки мощности анаэробного процесса предлагается также учитывать скорость образования кислородного долга, т. е. отношение величины общего кислородного долга на время выполнения работы.

Несмотря на значительное число работ, анаэробные возможности организма изучены в меньшей степени, чем аэробные. Более того, в отношении анаэробной производительности существуют спорные представления. Так, в специальной литературе приводятся очень разноречивые данные о величине кислородной задолженности и ее отдельных фракций. Даже у представителей одного и того же вида спорта (плавание) получены заметно отличающиеся данные максимального кислородного долга. В этом отношении представляют интерес высказывания видного физиолога труда М. И. Виноградова: «…кислородный долг не является непосредственным наследием рабочего периода и, следовательно, не дает основания судить об объеме процессов распада во время работы». С этим трудно не согласиться, так как величина кислородной задолженности отражает не только рабочие сдвиги, но и после рабочие изменения, следовые сдвиги ряда функций.

В настоящее время идет интенсивный поиск новых, более информативных энергетических критериев спортивной работоспособности. Это нашло отражение в ряде научных исследований. Так, профессор А. Б. Гандельсман указывает, что важным энергетическим критерием надежности двигательной деятельности является интенсивность потребления кислорода, характерная для спортсменов конкретной специальности. Установлено, что представители разных видов спорта располагаются по шкале кислородного потребления неодинаково.

Невысокие величины специального потребления кислорода характерны для тяжелоатлетов (1,7 л/мин), прыгунов на батуте (2,1 л/мин), гимнастов (2,3 л/мин), бегунов на короткие дистанции (2,8 л/мин).

Более высокое потребление кислорода имеет место у конькобежцев (3,1 л/мин), велосипедистов (3,2 л/мин), бегунов на длинные дистанции (3,3 л/мин), пловцов подводников (4,1 л/мин).

В качестве показателя биоэнергетической надежности (ПБН) специальной работоспособности предлагается учитывать отношение МПК, характерное для определенного спортсмена, к специальному потреблению кислорода (СПК), типичному для спортсменов данного вида спорта: ПБН Если это указывает на СПК высокую, если меньше 1, - на низкую биоэнергетическую надежность.

По данным Н. И. Волкова, в качестве индикатора, своего рода лакмусовой бумажки, емкости аэробного процесса может служить величина кислорода, потребленного за все время работы. Максимальная аэробная емкость может быть выражена как произведение величины наибольшего потребления кислорода на время, в течение которого возможно удержать этот уровень.

Говоря другими словами, важно оценить не только величину МПК, но и способность основных «служб» кислородного обеспечения - органов дыхания, кровообращения - поддерживать высокий уровень потребления кислорода в течение продолжительного времени.

Резервы повышения работоспособности спортсменов ищут также в экономизации спортивных движений. С этой целью рассчитывают энергетическую стоимость различных упражнений, отдельных тренировочных нагрузок и даже современных мировых рекордов.

Например, в циклических упражнениях уровень спортивных достижений во многом определяется способностью спортсменов экономно расходовать энергию. Так, конькобежцы, владеющие хорошей спортивной техникой скоростного бега на коньках, расходуют энергию при выполнении одинаковой работы на 25-40% меньше, чем начинающие спортсмены (В. Михайлов, Г. Панов, 1975). Таким образом, под влиянием спортивного совершенствования уменьшаются энерготраты на единицу выполненной работы, повышается коэффициент полезного действия мышечных усилий.

Экономизацию в основном рассматривают в двух направлениях. Первое заключается в совершенствовании технического мастерства спортсменов. Ищут наиболее экономически выгодные варианты спортивной техники, при которых в активную деятельность вовлекается наименьшее число мышц, когда движения производятся свободно, раскрепощенно. Этому способствуют исследования расслабления мышц, наиболее рационального использования сил инерции и т. д.

Считают, что систематическая работа над техникой спортивных движений является залогом успеха не только спортсменов невысокого класса, но и опытных мастеров спорта.

Второе направление, названное функциональной экономизацией, основывается на оценке соотношения аэробных и анаэробных источников энергообеспечения. Как уже указывалось, аэробный механизм образования энергии наиболее выгодный. Следовательно, усиление доли участия в работе аэробных процессов обеспечивает более выгодный режим энергообеспечения.

Для исследования функциональной экономизации нередко определяют так называемый порог анаэробного обмена (ПАНО), т. е. величину нагрузки, при которой начинают заметно усиливаться анаэробные процессы. Например, молочная кислота в крови - важный показатель анаэробного обмена - наблюдается тогда, когда потребление кислорода достигает 50-70% от МПК. Чем больше ПАНО, тем выше способность организма работать за счет более выгодных аэробных реакций. Установлено, что с ростом тренированности ПАНО у отдельных спортсменов достигает 75-80% от МПК.

Аэробные и анаэробные возможности развиваются в ходе тренировки. Но оказалось, что этот процесс протекает далеко не равномерно. Имеются данные о том, что наибольший рост, например, аэробной производительности наблюдается в подготовительном периоде тренировки, а в соревновательном периоде величина МПК стабилизируется или даже снижается (В. В. Васильева, 1975). Установлено также, что в процессе тренировки происходит изменение соотношения между различными реакциями, обеспечивающими процесс потребления кислорода. Так, по мере роста тренированности, потребление кислорода во время физических упражнений осуществляется при меньшем усилении вентиляции легких, сердечной деятельности и за счет более эффективного усвоения кислорода тканями. Это отражает более согласованную деятельность дыхательной и сердечнососудистой системы.

Аэробная и анаэробная производительность спортсмена.

Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Наибольшее количество кислорода, которое организм может потребить за 1 минуту при предельно тяжелой для него работе - называется максимальным потреблением кислорода (МПК)

MПK - является показателем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. у спортсменов, в зависимости от специализации, - 50-90 мл/кг.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, которое требуется для выполнения определенной работы - называется кислородным запросом

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, необходимое для совершения всей работы

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Наибольшей величины он достигает на коротких дистанциях. Например, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счет анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счет анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, которое организм потребляет во время работы.



Показателем анаэробной производительности является - максимальный кислородный долг.Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше м В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата. аксимальный кислородный долг.

В кислородном долге различают 2 фракции (части): алактатную и лактатную. Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счет запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счет анаэробных источников энергии.Появление в организме первых признаков анаэробного ресинтеза АТФ - называется порогом анаэробного обмена (ПАНО). ПAHO считается в процентах от МПК. У спортсменов в зависимости от квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счет аэробных источников, более выгодных энергетически. Поэтому у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.



В системе оздоровительной физической культуры выделяют следующие основные направления:

Оздоровительно-рекреативное,

Оздоровительно-реабилитационное,

Спортивно-реабилитационное, гигиеническое.

Оздоровительно-рекреативная физическая культура - это отдых, восстановление сил с помощью средств физического воспитания (спортивные игры, туризм, охота и т.д.). Рекреация означает отдых, восстановление сил, израсходованных в процессе труда.

Оздоровительно-реабилитационная физическая культура - это специально направленное использование физических упражнений в качестве средств лечения заболеваний и восстановления функций организма, нарушенных или утраченных вследствие заболеваний, травм, переутомления и др.

Оздоровительно-реабилитационное направление в нашей стране представлено в основном тремя формами:

· группы ЛФК при диспансерах, больницах

· группы здоровья в коллективах физической культуры

· самостоятельные занятия.

Большую роль в системе подготовки спортсмена играет спортивно-реабилитационная физическая культура. Она направлена на восстановление функциональных и приспособительных возможностей организма после длительных периодов напряженных тренировок и соревновательных нагрузок, особенно при перетренировке и ликвидации последствий спортивных травм.

Гигиеническая физическая культура - это различные формы физической культуры, включенные в рамки повседневного быта (утренняя гимнастика, прогулки и т.д.)

Закаливание - это система специальной тренировки терморегуляторных процессов организма, включающая в себя процедуры, действие которых направлено на повышение устойчивости организма к переохлаждению или перегреванию. В результате закаливания увеличивается работоспособность, снижается заболеваемость, особенно простудного характера, улучшается самочувствие.

Наиболее сильная закаливающая процедура - плавание в ледяной воде - имеет ряд противопоказаний, особенно противопоказано: детям, подросткам и людям, постоянно страдающим заболеваниями верхних дыхательных путей. При длительных перерывах в закаливании его эффект снижается или теряется совсем.

Задачами физкультуры в целях профилактики профессиональных заболеваний являются улучшения функционального состояния и предупреждения прогрессирования болезни: повышение физической и умственной работоспособности, адаптация к внешним факторам; снятие утомлениям повышение адаптационных возможностей; воспитание потребности в закаливании, занятиях оздоровительной физкультурой.

Система реабилитации включает уроки физкультуры, желательно на свежем воздухе, занятие ЛФК, терренкур, прогулки на лыжах, езду на велосипеде. Предпочтительнее циклические виды спорта, особенно при заболеваниях сердца, легких, ожирении .

При заболеваниях сердечно-сосудистой, дыхательной и эндокринной систем- упражнения в ходьбе, катание на коньках.

При проведении занятий с работниками, имеющими изменения опорно-двигательного аппарата, важны профилактические занятия, направленные в первую очередь на придание работнику правильной осанки и на нормализацию функций ОДА. Не следует допускать чрезмерных нагрузок. Упражнения с гантелями, мячами и на тренажерах должны выполняться только в щадящем для позвоночника режиме, лежа и с включением в конце занятий упражнений на растягивание и на релаксацию.

Виды оздоровительной физической культуры
Существует много форм физической культуры, которые используются для нормализации функционального состояния человека, а так же для профилактики заболеваний.

Утренняя гигиеническая гимнастика (УГГ) - одно из средств физической культуры. Она развивает силу, гибкость, координацию движений. Улучшает деятельность внутренних органов, вызывает подъем эмоций, особенно если упражнение выполняется под музыку. УГГ лучше выполнять утром в сочетанием с закаливанием, но не очень рано, особенно больным с заболеванием сердечно- сосудистой системы.

Подвижные спортивные игры нормализация психо-эмоционального состояния.

Ходьба и бег . Ходьба как физическое упражнение - ценное средство для улучшения деятельности ЦНС , сердечно –сосудистой и дыхательной систем . Ходьба должна быть продолжительной, но не утомительной.

Бег - физическое упражнение с большой нагрузкой. Он развивает выносливость, особенно полезно для профилактики заболевания сердечно-сосудистой системы, ожирения и др. Его лучше сочетать с ходьбой и дыхательными упражнениями. Ходьбу и бег можно проводить днем и вечером.

Велосипедный спорт велопрогулки показаны при заболеваниях сердечно- сосудистой, дыхательной систем и нарушение обмена веществ, а также при последствии травм суставов ног (для разработки тугоподвижности и тренировки мышц). Зимой велопрогулки заменяются упражнениями на велотренажерах.

Плавание - отличное тренирующее средство и закаливающее. Плавание усиливает деятельность кардиоресператорной системы и обмен веществ, а при травмах и заболеваниях позвоночника ведет к исчезновению болей и улучшению подвижности в суставах.

Особенно важно сочетание физических нагрузок с закаливанием для работников, имеющих отклонения в состоянии здоровья. Так как такие занятия повышают общую тренированность организма, способствуют нормализации обменных процессов, функционального состояния, а так же ведут к усилению закаливания и предупреждают простудные заболевания.

Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение в уровнях развития аэробной и анаэробных составляющих спортивной работоспособности у представителей различных видов спорта. Особенности биохимических изменений в организме в критических условиях мышечной деятельности.

Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий:

  • анаэробную (алактатную) зону мощности нагрузок;
  • анаэробную (гликолитическую) зону;
  • зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы);
  • зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы);
  • зону аэробного энергообеспечения.

Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат + АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается.

Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса. Лактат обладает хорошей, но конечной скоростью проникновения через мембраны и равновесие между его содержанием в мышцах и плазме устанавливается лишь спустя 5-10 мин. от начала работы.

При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии.

Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии. При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д.

Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая из 2-4 повторных упражнений, продолжительностью около 1 мин., выполняемые через равные или сокращающиеся интервалы отдыха. Каждое повторное упражнение должно выполняться с наибольшей возможной интенсивностью. Состояние аэробных и анаэробных процессов энергообеспечения мышечной работы можно охарактеризовать с помощью теста со ступенчатым увеличением нагрузки до "отказа".
Показателями, характеризующими уровень анаэробных систем, являются величины алактатного и лактатного кислородного долга, природа которых рассмотрена ранее. Информативными показателями глубины гликолитических анаэробных сдвигов являются максимальная концентрация молочной кислоты в крови, показатели активной реакции крови (рН) и сдвига буферных оснований (ВЕ).

Для оценки уровня развития аэробных механизмов энергообразования используется определение максимального потребления кислорода (МПК) – наибольшего кислородного потребления в единицу времени, которое может быть достигнуто в условиях напряженной мышечной работы.
МПК характеризует максимальную мощность аэробного процесса и носит интегральный (обобщенный) характер, так как способность вырабатывать энергию в аэробных процессах определяется совокупной деятельностью многих органов и систем организма, ответственных за утилизацию, транспорт и использование кислорода. В видах спорта, где основным источником энергии является аэробный процесс, наряду с мощностью, большое значение имеет его емкость. В качестве показателя емкости используется время удержания максимального кислородного потребления. Для этого вместе с величиной МПК определяется значение «критической мощности»- наименьшей мощности упражнения, при которой достигается МПК. Для этих целей наиболее удобен тест со ступенчатым увеличением нагрузки. Затем (обычно на следующий день) спортсменам предлагается выполнить работу на уровне критической мощности. Фиксируется время, в течение которого может удерживаться «критическая мощность» и изменяется потребление кислорода. Время работы на «критической мощности» и время удержания МПК хорошо коррелируют между собой и являются информативными в отношении емкости аэробного пути ресинтеза АТФ.

Как известно, начальные этапы любой достаточно напряженной мышечной работы обеспечиваются энергией за счет анаэробных процессов. Основная причина этого – инертность систем аэробного энергообеспечения. После развертывания аэробного процесса до уровня, соответствующего мощности выполняемого упражнения, могут возникнуть две ситуации:

  1. аэробные процессы полностью справляются с энергообеспечением организма;
  2. наряду с аэробным процессом в энергообеспечении участвует анаэробный гликолиз.

Исследованиями показано, что в упражнениях, мощность которых еще не достигла «критической», и, следовательно, аэробные процессы не развернулись до максимального уровня, в энергетическом обеспечении работы на всем ее протяжении может участвовать анаэробный гликолиз. Та наименьшая мощность, начиная с которой в выработке энергии на всем протяжении работы, наряду с аэробными процессами, принимает участие гликолиз, получила название "порога анаэробного обмена" (ПАНО) . Мощность ПАНО принято выражать в относительных единицах – уровнем потребления кислорода (в процентах от МПК), достигнутым во время работы. Улучшение тренированности к нагрузкам аэробной направленности сопровождается повышением ПАНО. Значение ПАНО зависит в первую очередь от особенностей аэробных механизмов энергообразования в частности, от их эффективности. Так как эффективность аэробного процесса может претерпевать изменения, например, за счет изменения сопряженности окисления с фосфорилированием, представляет интерес оценки этой стороны функциональной готовности организма. Наиболее важны внутри индивидуальные изменения этого показателя на разных этапах тренировочного цикла. Оценить эффективность аэробного процесса можно также в тесте со ступенчатым увеличением нагрузки при определении уровня кислородного потребления на каждой ступени.
Итак, участие анаэробных и аэробных процессов в энергетическом обеспечении мышечной деятельности определяется, с одной стороны, мощностью и другими особенностями выполняемого упражнения, с другой - кинетическими характеристиками (максимальная мощность, время удержания максимальной мощности, максимальная емкость и эффективность) процессов энергообразования.
Рассмотренные кинетические характеристики зависят от совместного действия множества тканей и органов и по-разному изменяются под воздействием тренировочных упражнений. Эту особенность ответной реакции биоэнергетических процессов на тренировочные нагрузки необходимо учитывать при составлении тренировочных программ.

Важнейшим из всех рассмотренных параметров биоэнегетиических механизмов является показатель мощности аэробных механизмов - показатель МПК, который в значительной мере определяет общую физическую работоспособность. Вклад этого показателя в специальную физическую работоспособность в циклических видах спорта, в дистанциях, начиная со средних дистанций, составляет от 50 до 95%, в игровых видах спорта и единоборствах - от 50 до 60% и более. По крайней мере, во всех видах спорта, по мнению А.А. Гуминского (1976) величина МПК определяет так называемую "общую тренировочную работоспособность" .

МПК у физически малоподготовленных мужчин в возрасте 20-30 лет в среднем составляет 2,5-3,5 л/мин или 40-50 мл/кг.мин (у женщин примерно на 10% меньше). У выдающихся спортсменов (бегунов, лыжников и т.д.) МПК достигает 5-6 л/мин (до 80 мл/кг.мин и выше). Движение атмосферного кислорода в организме от легких до тканей определяет участие в кислородном транспорте следующих систем организма: система внешнего дыхания (вентиляция), система крови, сердечно-сосудистая система (циркуляция), система утилизации организмом кислорода.

Повышение и совершенствование (повышение КПД) аэробной производительности (АП) в процессе тренировки в первую очередь связано с повышением производительности систем вентиляции, затем циркуляции и утилизации; их включение идет не параллельно и постепенно всех разом, а гетерохронно: на начальном этапе адаптации доминирует система вентиляции, затем циркуляции и на этапе высшего спортивного мастерства - система утилизации (С.Н. Кучкин, 1983, 1986).

Общий размер прироста АП разными авторами определяется от 20 до 100%, однако исследования в лаборатории физиологии ВГАФК (С.Н. Кучкин, 1980, 1986) показали, что общий размер прироста показателя относительного МПК составляет в среднем 1/3 от исходного (генетически детерминированного уровня) - т.е. около 35%. Причем на этапе начальной подготовки прирост МПК наиболее ощутим и составляет до 20% (половину от общего прироста), на этапе спортивного совершенствования (II этап адаптации) прирост МПК/вес замедляется и составляет около 10%, а на этапе высшего спортивного мастерства (III этап адаптации) прирост минимален - до 5-7%.

Таким образом, начальный период адаптации является наиболее благоприятным для тренировки аэробных возможностей, а окончание этого этапа является важным для определения перспективности данного спортсмена в отношении аэробной работоспособности.

Рассмотрим кратко основные изменения в системах организма, ответственных за кислородный транспорт при развитии выносливости.

В системе внешнего дыхания в первую очередь увеличиваются резервы мощности – это показатели ЖЕЛ, МВЛ, силы и выносливости дыхательных мышц. Так, у высококвалифицированных пловцов, гребцов-академистов показатели ЖЕЛ могут достигать 8-9 литров, а МВЛ – до 250-280 л/мин и выше. Резервы мощности – это резервы первого эшелона, и включаются они в повышение АП уже на начальных этапах адаптации. Поэтому всем начинающим спортсменам и в начале общеподготовительного периода можно смело рекомендовать разнообразные дыхательные упражнения, что будет способствовать лучшей аэробной адаптации.

На более поздних этапах адаптации улучшается способность к мобилизации резервов мощности, а позднее – повышается экономичность (эффективность) внешнего дыхания (С.Н. Кучкин, 1983, 1986, 1991). Так, спортсмены-мастера могут использовать ЖЕЛ на 60-70% при тяжелой работе (против 30-35% - у начинающих). Более эффективно поглощается кислород из вдыхаемого воздуха (по показателям коэффициента использования кислорода, вентиляционного эквивалента и др.), что обеспечивает высокие величины МПК при вентиляции «всего» в 100-120 л/мин и невысокой частоте дыхания. Этому способствуют и механизмы более эффективной работы системы тканевой утилизации кислорода в работающих мышцах, в которых может использоваться почти 100% доставляемого к ним кислорода.

В системе крови , как правило, не наблюдается повышенного содержания эритроцитов и гемоглобина. Но увеличение обмена циркулирующей крови (преимущественно за счет плазмы), появление так называемой гемоконцентрации (увеличения содержания гемоглобина за счет выхода части плазмы в ткани), в результате которой при работе циркулирующая кровь имеет на 10-18% гемоглобина больше, что приводит к повышению так называемой кислородной емкости крови .

Значительные изменения при развитии выносливости происходят в системе циркуляции – сердечно-сосудистой системе . В первую очередь это сказывается на повышении резервов мощности – производительности сердца (систолический объем может достигать 180-210 мл, что при эффективной ЧСС в 180-190 уд/мин может дать МОК в 32-38 литров/мин). Это связано с обязательным увеличением общего объема сердца с 750 мл до 1200 мл и более, обусловленных рабочей гипертрофией и тоногенной дилотацией (расширением) полостей сердца.

Резервы регуляторных механизмов заключаются формировании брадикардии покоя и относительной рабочей брадикардии при выполнении аэробной работы. Сравните: резерв по ЧСС у тренированных равен: , а у нетренированных –

. То есть, только по ЧСС резерв с тренировкой составит 164%.

Еще один важный регуляторный механизм: через сосуды работающих мышц у тренированных проходит гораздо больше крови, чум в неработающие мышцы. В.В. Васильева (1986) показала, что это связано с изменением просвета сосудов в соответствующих мышцах. Совершенствование системы утилизации связано в значительной мере с изменениями в работающих мышцах: увеличением количества медленных мышечных волокон с аэробными механизмами энергопродукции; рабочей гипертрофией саркоплазматического типа и увеличением количества митохондрий; значительно более высокой капилляризацией, а, следовательно, более высоким кислородным обеспечением; значительным аэробными биохимическими перестройками в мышцах (повышение емкости и мощностиаэробного механизма за счет увеличения содержания и активности ферментов окислительного метаболизма в 2-3 раза, увеличения содержания миоглобина в 1,5-2 раза, а также гликогена и липидов на 30-50% и др.).

Таким образом, тренировка выносливости вызывает следующие основные функциональные эффекты:

1. Повышение и совершенствование всех качественных и количественных показателей аэробного механизма энергообеспечения, что проявляется при максимальной аэробной работе.

2. Повышение экономичности деятельности организма, что проявляется в уменьшении затрат на единицу работы и в меньших функциональных сдвигах при стандартных нагрузках (ЧСС, вентиляция, лактат и др.) .

3. Повышение резистентности – способности организма противостоять сдвигам во внутренней среде организма, сохраняя гомеостаз, компенсируя эти сдвиги.

4. Совершенствование терморегуляции и повышение резервов энергетических ресурсов.

5. Повышение эффективности координации работы двигательных и вегетативных функций при непосредственной регуляции посредством нервных и гуморальных механизмов.