Мышечные волокна: виды, свойства, структура. Мышечные волокна. Типы мышечных волокон Гмв мышечные волокна

Сколько делать повторений, чтобы раскачать окислительные мышечные волокна ?

В прошлой статье я рассказывал о белых мышечных волокнах , теперь настало время красных, т.к. они тоже дают большой вклад в развитие максимальных объёмов. Работая несколько лет тренером, я заметил, что всего процентов 10 спортсменов тренируют их, а большинство даже и не знают о том, что у них потенциал для развития такой же, как и у белых.

Тренировка медленных мышечных волокон

Опять же не буду вас путать большим объёмом непонятных для вас терминов, просто скажу, как их нужно тренировать. Если кому-то интересно, почему именно так, можете почитать профессора Силуянова.

Я выделяю 4 основных правила для развития этих волокон:

1.Время нахождения под нагрузкой должно быть от 30 до 50 секунд.

2.Частичная амплитуда. Мышцы нельзя расслаблять, они должны быть постоянно в напряжении. Это важно для максимального закисления молочной кислотой. Во время подхода вы должны испытывать чувство жжения.

3.Медленная скорость повторений.

4.Вес должен быть 30-50% от разового максимума. Иначе вы не сможете выполнить необходимый объём работы.

Сколько делать подходов для медленных мышечных волокон?

Подходов должно быть от 2 до 5, с отдыхом между ними не менее 5 минут. Но тут не просто подходы, а они тройные. Сейчас поясню.

Делаете подход в диапазоне 30-50 секунд, добиваетесь сильного жжения, останавливаете подход, отдыхаете 30 секунд, и снова приступаем к выполнению, потом 30 секунд и третий такой же подход. Вот теперь мы выполнили 1 длинный тройной подход, их должно быть от 2 до 5 за тренировку. Плюс таких тренировок в том, что их можно выполнять дома. К примеру, отжимания от пола или подъем небольших гантелей для развития дельт, бицепсов и т.д.

Когда их тренировать?

Я вижу тут 2 варианта:

1.Тренировать их после тренировки быстрых мышечных волокон. Сначала заканчиваете тренировку белых, только потом приступаем к красным, это очень важный момент!

2.Делать периодизацию.

На 1-й неделе тренируем белые (малое количество повторений, вес 70-90%, взрывной стиль, отказ в диапазоне 7-30 секунд).

На 2-й недели красные (Небольшой вес отягощения 30-50%, медленные и частичные повторения, время под нагрузкой 30-50 секунд).

Друзья пробуйте, экспериментируйте, кто не пробовал. Могу сказать, что эта схема вам поможет преодолеть плато в вашем прогрессе.

Дают неплохой вклад в увеличении объёма мускулатуры, и если вы никогда их не тренировали, то это поможет вам накинуть дополнительные сантиметры в обхвате.

Определяющим спортивные успехи человека. При этом главным критерием, отличающим прирожденных атлетов от обычных людей является соотношение мышечных волокон быстрого и медленного типа. Именно это соотношение влияет на то, легко ли конкретный человек будет сжигать жир или набирать мышечную массу.

Важно и то, что понимание мышечной анатомии и знание основ физиологии работы мышц напрямую связано со способностью подобрать наиболее эффективную стратегию физических тренировок именно для вас. Для того, чтобы сжигать жир или наращивать мышцы с минимальным количеством усилий, необходимо лишь понимать, как именно устроена работа организма.

Что такое мышечное волокно?

Сама по себе мускулатура состоит из соединительной ткани, капилляров, саркоплазмы и, непосредственно, мышечных волокон. Мышечное волокно - это уникальный тип физиологической структуры, обладающей одновременно как прочностью, так и эластичностью. В свою очередь, мышечные волокна отличаются друг от друга, поскольку делятся на быстрые и медленные.

В основе различия лежит источник энергии, которую используют различные типы мышечных волокон. Медленные (красные) волокна, ответственные за статические или монотонные нагрузки, используют в качестве основного источника энергии жир. Быстрые (белые) волокна, необходимые для короткой и высокоинтенсивной нагрузки - запасы и креатина.

Быстрые и медленные мышечные волокна

Наиболее простым и понятным примером отличия анатомии различных типов мышечных волокон является или другой птицы. Грудка и крылья обладают характерным белым цветом и минимальным количеством жира, тогда как окорочка и бедрышки отличаются темно-красным цветом мяса и более высоким содержанием жировой ткани.

Поскольку большую часть времени курица проводит стоя, мускулатура ее ног испытывает постоянную статическую нагрузку - фактически основную работу выполняют медленные мышечные волокна (1) . В противоположность этому, мышцы крыльев используются исключительно для непродолжительных, но энергичных взмахов - нагрузка при этом идет на быстрые мышечные волокна.

Медленные (красные) мышечные волокна

Несмотря на то, что сами по себе медленные мышечные волокна достаточно тонкие и слабые, они могут поддерживать физическую нагрузку крайне продолжительное время. Их красный цвет во многом обусловлен наличием молекул кислорода, необходимого для окисления жиров (триглицеридов), служащих для медленных волокон главным источником энергии.

Именно поэтому аэробный тренинг и продолжительное кардио идеальны для похудения - по сути, такие нагрузки вовлекает в работу медленные мышечные волокна и буквально заставляют тело сжигать жировые запасы. Однако напомним, что для обеспечения оптимального питания мышечных волокон кислородом важно тренироваться в .

Быстрые (белые) мышечные волокна

Для высокоинтенсивных (так называемых «взрывных») нагрузок мышцы требуют быстродоступной энергии. Однако жир для этих целей не подойдет, поскольку его транспортировка и окисление занимает как минимум несколько минут. Говоря простыми словами, энергия должна находиться в легкодоступной форме как можно ближе к самим мышечным волокнам.

Для взрывных усилий организм использует быстрые мышечные волокна, работающие преимущественно на гликогене (то есть, на запасах углеводов в мышцах), АТФ и (2) . При этом напомним, что рост мышц и увеличение мускулатуры в результате силовых тренировок во многом обусловлен увеличением этих самых энергетических запасов.

Набор - стратегия тренировок и советы по питанию, чтобы быстро накачаться.

Как определить, каких волокон у вас больше?

Важно отметить и то, что в реальности мускулатура конкретного человека всегда состоит из сплетения мышечных волокон различных типов. В стабилизирующих мышцах корпуса и позвоночника, и в мышцах ног обычно преобладают волокна медленного типа, тогда как в «обычных мышцах» и прочей скелетной мускулатуре - волокна быстрого типа (3) .

Однако под воздействием регулярных физических тренировок тело атлета способно адаптироваться и менять это соотношение. Научные исследования говорят о том, что у бегунов на марафонские дистанции более 80% всех мышечных волокон являются медленными - в отличие от спринтеров, у которых превалируют быстрые волокна, составляя порядка 65-70%.

Тренировки для роста мышц и для похудения

Для тренировок быстрых мышечных волокон (и увеличения мышечной массы тела) лучше всего подходят - силовые упражнения, выполняемые в границе 6-12 повторений. Чем выше рабочий вес и чем меньше количество повторений (и меньше время нахождения под нагрузкой), тем активнее в работе задействованы именно быстрые мышечные волокна.

В противоположность этому, для сжигания жира (и вовлечения в работу медленных мышечных волокон, потребляющих жировые запасы) необходимы как статические нагрузки, так и монотонное кардио, . Плюс, подобные тренировки особенно эффективны при низком уровне глюкозы в крови - это заставит организм ориентироваться на жировые запасы.

***

Мышечные волокна делятся на быстрые и медленные. Силовые тренировки преимущественно вовлекают в работу быстрые волокна, требуя углеводов и гликогена. В противоположность этому, для вовлечения медленных волокон и сжигания жира необходимы продолжительные аэробные нагрузки низкой интенсивности, выполняемые не меньше 30-45 минут.

Научные источники:

  1. Muscles – Fast and slow twitch,
  2. Skeletal striated muscle,
  3. Speed and power training,
  4. Fast Twitch, Slow Twitch…. Which One Are You?

Рассмотрим спортсмена, имеющего небольшие мышцы, которые становятся лимитирующим фактором. Например, бегун-перворазрядник, достигший предела своего развития, имеет мышцы, хотя и небольшие, но аэробные, он практически не устает, но уровень результата невысокий. Его мышцы проработаны. Они потребляют кислород по максимуму для своей массы. Что с таким спортсменом делать? Напомним, что в мышечном волокне каждая миофибрилла оплетается митохондриями, и больше определенного предела они не могут образоваться, только в один слой, если условно так говорить. В конце концов, эти МВ накапливают столько митохондрий, что больше прибавить не могут. Если мы этому спортсмену увеличим силу, то есть создадим новые морфологические структуры в виде миофибрилл, то вокруг них начнут нарастать новые митохондрии, и его потенциал начнет расти. Но обычными силовыми тренировками увеличения силы ОМВ не добиться. Дело тут вот в чем. Согласно исследованиям последних лет, существует четыре основных фактора, определяющих ускоренный синтез белка в клетках мышц, а значит - и развитие силы. Это запас аминокислот в клетке, повышенная концентрация анаболических гормонов в крови, повышенная концентрация свободного креатина в МВ, и повышенная концентрация ионов водорода. Выделение гормонов вызывается психическим напряжением. Повышенная концентрация свободного креатина образуется при значительном расходе КрФ в мышцах – нужна работа «до отказа». Повышенная концентрация ионов водорода - это закисление. Разумеется, закисление при этом не должно приводить к разрушению структур клетки. Так вот, в классической силовой работе используются и окислительные, и гликолитические волокна, но тренируются только гликолитические. Поскольку режим упражнений динамический (периодически мышцы полностью расслабляются), то через окислительные мышечные волокна идет кровь, доставляет кислород, и митохондрии устраняют ионы водорода, а без ионов водорода нет предпосылок роста миофибрилл в ОМВ, поэтому сила ОМВ не растет. Нужно слегка закислять мышцу, иначе она в силе прибавлять не будет. Это удивительно, что окислительные волокна работают, а эффекта нет. Где много кислорода, где много митохондрий, ионы водорода просто исчезают. Они образуются в быстрых волокнах, переходят в медленные и там исчезают. Поэтому главного стимулятора развития силы для окислительных волокон в динамическом режиме нет.

Мы в нашей лаборатории придумали упражнения, которые назвали статодинамическими, без расслабления мышц. Например, приседания со штангой с небольшим весом, даже с грифом от штанги. Электромиограммы свидетельствуют, что активность мышц в таком режиме около 50%, по мере утомления к концу упражнения она увеличивается, но не достигает максимума, что говорит о том, что высокопороговые МВ не рекрутируются. Выполнять приседания нужно медленно, и не выпрямлять ноги до конца, не давая возможности мышцам бедра хотя бы на мгновение расслабиться. Обычные приседания, только с амплитудой 15°, считая от горизонтали вверх. Как только выше привстанешь, мышца сильно расслабляется. После выполнения таких приседаний уже через 30 - 40 секунд мышцы устают, и появляется боль. Если мышца напряжена, то мышечные волокна сдавливают капилляры и кровь по ним перестает поступать в мышцу. Через несколько секунд начинается гипоксия, поэтому во всех клетках, в том числе и в окислительных мышечных волокнах, начинается анаэробный гликолиз, образуется молочная кислота. Мы использовали в многочисленных экспериментах самые обычные упражнения. Важно только стараться не допускать фазы расслабления мышц - делать движения в ограниченном диапазоне. Темп упражнения - медленный, количество повторений - до сильного утомления, до отказа от сильной боли. В культуризме прописан принцип, который мы реализуем - принцип накачки мышц. Это фактически то же, что мы разработали теоретически, а потом экспериментально доказали. Мы предлагаем делать упражнения в виде суперсерий: 30 - 40 секунд длится упражнение, 30 - 40 секунд отдых, и так три раза подряд. Затем 10 минут отдохнуть и все повторить. Если сделать 3 - 4 суперсерии (футболисты у нас делают по 6), то получится 18 подходов. Это хорошая развивающая работа для окислительных мышечных волокон. Но, конечно, начинать надо с одной суперсерии, а также тренировки для одной (конкретной) мышечной группы выполнять два раза в неделю. Рост массы миофибрилл требует 10 - 15 дней, поэтому силовая тренировка в развивающем режиме должна продолжаться 2 - 3 недели. За это время должны развернуться анаболические процессы, а дальнейшее продолжение развивающих тренировок может помешать процессам синтеза. Поэтому в последующие 1 - 2 недели выполняются только тонизирующие упражнения (1 - 3 подхода или суперсерия).

Можно выполнять такие упражнения круговым методом, но если включить в круговую тренировку упражнения для всех групп мышц, то это довольно мощный удар по эндокринной системе, что потребует большого времени для восстановления. Поэтому более подходящий вариант для бегунов на выносливость и лыжников - каждый день делать силовую работу, но только на разные группы мышц, чтобы гормоны выбрасывались в кровь и помогали синтезу различных органелл. Тогда упражнения для основных мышц будут повторяться, скажем, через четыре дня. Вообще, нужно отметить, что выполнение силовых упражнений каждый день дает общий оздоровительный эффект, способствует восстановлению, потому что внутренний гормональный фон повышается.

Аэробные тренировки обязательно должны предшествовать силовым. Ведь цель силовых упражнений - создать условия для гипертрофии, для создания новых миофибрилл. А это выделение гормонов, которые стимулируют ДНК внутри мышцы, что создает в конечном итоге предструктуру миофибрилл. Если после этого сделать интенсивную аэробную работу, то потребуется энергия, которая может черпаться как из гликогена, так и из этих предструктур, которые начнут разрушаться. Поэтому лучше сначала сделать аэробную работу, например, утром, а потом вечером - силовую, чтобы ночь оставить для необходимого синтеза вышеназванных структур.

ВОПРОС? При значительном закислении митохондрии погибают. Значит, при выполнении статодинамических упражнений погибают митохондрии в ОМВ? Насколько быстро можно их восстановить? Нужно ли исключать статодинамические упражнения при наборе спортивной формы?

Специально этот вопрос мы перед собой поставили, заставили борцов тренироваться, тестировали их до и после эксперимента. Они выполняли статодинамические упражнения по 6 - 8 суперсерий (3х8 = 24 раза). Очень тяжело было ребятам. И в результате оказалось, что выросли и силовые возможности, естественно, и аэробные возможности выросли. То есть эти упражнения не повлияли отрицательно на аэробные возможности мышц. Предполагается, что время терпения закисления не так велико, чтобы разрушить ОМВ, а они одарены большим количеством митохондрий, ионы водорода быстро поглощаются и ничего страшного не происходит. На каждом подходе тратится 5 - 6 секунд на то, чтобы мышца сильно закислилась. А потом лактат быстро уничтожается. Критическое время – больше минуты. Это упражнения типа приседания со штангой небольшого веса по 50 - 60 раз, это будет 2 - 3 минуты. Вот эти упражнения очень сильно разрушают мышцу. И вот у лыжников преимущественно такие упражнения делаются – небольшой вес, длительность упражнения около минуты-полутора минут. А статодинамические упражнения в тонизирующем режиме можно делать хоть за день до старта, только в развивающем режиме делать не стоит.

Боль в мышцах: молочная кислота или…

После того, как спортсмен приступил к тренировкам после перерыва более 50 дней, часто возникают боли в мышцах. Что это значит? Вопреки общепринятой точке зрения, с образованием молочной кислоты в мышцах это никак не связано. Это хорошо показано за последние 10 лет. Специально заставляли людей делать эксцентрические упражнения, то есть на растягивание мышц. Например, заставляли людей бегать с горы. Человек 5 - 6 раз сбегает с горы длиной метров 800, достаточно крутой. Затем приходит в лабораторию, где у него берут биопсию и смотрят, что происходит с мышцами. Сразу после тренировки мышцы не очень болят, но под микроскопом видно, что есть лопнувшие миофибриллы, что они просто порвались. В последующие дни продолжают брать биопсию. Наблюдают, что то, что лопнуло, начинает постепенно терять свою форму, образуются лизосомы рядом, начинают эти остатки разрушать. А осколки молекул имеют много зарядов, радикалов. К радикалам присоединяется вода, она тоже поляризована, и в итоге вода получается связанной, не хватает воды в клетке. Поступает дополнительная вода, в итоге клетка начинает расти в размерах, появляется тургор. Мышца как бы набитая. Как это у спортсменов называется? Забитость мышц и еще какие-то слова они произносят... Короче говоря, мембраны клеток сильно натянуты, а рецепторы болевые сидят на мембранах, человек ощущает боль. А потом в течение 3-4 дней окончательно разрушается то, что разрушено, остаются одни аминокислоты. Свободные радикалы постепенно исчезают, и боль начинает уходить. Отрицательный эффект этого проявляется только в том, что то, что разрушено, надо заново создать.

Причина этого явления в следующем. У нетренированного человека в мышечных волокнах присутствуют миофибриллы разной длины. Есть короткие, и есть длинные. Поэтому при эксцентрических упражнениях короткие рвутся. А если ты регулярно тренируешься, то миофибриллы внутри МВ становятся все одинаковой длины. Конечно, новые миофибриллы образуются все разные, и короткие, и длинные. Но при регулярных тренировках короткие всё время разрываются, поэтому их мало, и сильная боль уже не возникает, вообще прекращается. А есть молочная кислота, нет молочной кислоты, - это никакого значения не имеет. Боль - это всегда разрушение мышечных волокон или же более страшное: травмы, например, разрывы мышечных волокон.

Во время тренировок для жиросжигания или набора массы, нужно задействовать разные типы мышечных волокон. О том, какие они бывают и как определить соотношение мышечных волокон в теле, читайте в статье.

Занимаясь спортом, мы постоянно употребляем слово «мышцы». Мы говорим про то, что они работают, болят, растут или не растут и так далее. Как правило, дальше этого наши знания о мышцах не заходят. Тем не менее, очень важно понимать, что по своему составу мышцы могут быть разные, и предрасположены к разного рода нагрузке.

Что такое мышцы?

Мышца – это орган, который состоит из волокон и способен к сокращению под воздействием нервных импульсов, посылаемых головным мозгом посредством связи «мозг-мышцы» . Соответственно, главные функции мышечного волокна в контексте спорта – осуществление движений и поддержание положения тела.

Мышечные волокна бывают двух типов – медленные (ММВ ) или красные, и быстрые (БМВ ) или белые.

Медленные (красные) мышечные волокна

Эти волокна называются медленными, потому что они обладают низкой скоростью сокращения и максимально приспособлены к выполнению продолжительной непрерывной работы. Они окружены сетью капилляров, которые постоянно доставляют кислород. Также эти волокна называют красными из-за своего цвета. Цвет обуславливает белок миоглобин . Этот тип волокон способен получать энергию не только из углеводов, но и из жиров.

Когда включаются в работу ММВ

ММВ начинают сокращаться при выполнении разного вида кардионагрузки, которые требуют выносливости:

Т.е. во всех случаях, когда Вы совершаете достаточно длительную и монотонную работу, которая не требует «взрывных» усилий. А значит интервальную кардиотренировку уже нельзя будет отнести к примеру работы исключительно ММВ.

Тренировка ММВ направлена на:

  • увеличение выносливости
  • избавление от жира
  • увеличения количества кровеносных капилляров

Быстрые (белые) мышечные волокна

По аналогии с медленными, можно догадаться, что быстрые мышечные волокна способны к высокоинтенсивной, тяжелой, но кратковременной работе. Эти волокна используют бескислородный способ получения энергии, а значит используют, главным образом, углеводы. Именно поэтому они белого цвета. Их быстрое утомление связано с тем, что во время сокращения мышечного волокна образуется молочная кислота и, чтобы вывести её, необходимо некоторое время.

Но белые мышечные волокна также бывают разными.

Подтипы быстрых мышечных волокон:

подтип 2A или промежуточные мышечные волокна

Их ещё называют переходными, потому что эти волокна могут использовать как аэробный так и анаэробный способ получения энергии. По сути, это что-то среднее между красными и белыми волокнами.

подтип 2Б или истинные БМВ

Эти волокна используют только анаэробный (бескислородный) способ получения энергии и обладают максимальной силой. Они способны к существенному росту, поэтому все программы по набору мышечной массы рассчитаны на работу именно этих волокон.

Когда включаются в работу БМВ

Это происходит, когда нужно приложить максимум усилий в короткий промежуток времени. Т.е. при анаэробных тренировках :

  • бодибилдинг
  • пауэрлифтинг
  • тяжелая атлетика
  • спринтерский бег и плавание
  • боевые искусства

Эти тренировки способствуют увеличению мышцы в объёме за счёт увеличения поперечного сечения мышечного волокна.

Тренировка БМВ направлена на:

  • увеличение силы
  • увеличение мышечной массы

Может ли меняться соотношение быстрых и медленных мышечных волокон в теле

На этот счёт существует несколько мнений и, как обычно, в защиту каждого из них приводят различные доводы.

Считается, что первостепенное соотношение мышечных волокон заложено в нас генетически и именно поэтому одним людям намного легче даётся бег, а другим силовая нагрузка. Но с другой стороны, исследуя людей, занимающихся разными видами спорта, было выявлено, что, например, у тяжелоатлетов преобладают быстрые мышечные волокна, а у марафонцев медленные. Соответственно, предполагают, что тренировки способны немного «перераспределять» соотношение и количество мышечных волокон в теле. Хотя, относительно второго подхода, не совсем понятно, было ли причиной преобладания тех или иных волокон определённый вид спорта, или всё-таки этот выбор спорта был последствием генетических задатков.

Ещё один важный момент, который нужно понимать – мышцы и волокна – это не одно и то же. Все крупные мышцы тела состоят из разных видов мышечных волокон. Не существует абсолютно «быстрых» и «абсолютно» медленных мышц, просто в них может преобладать то или иное мышечное волокно.

Как определить какие мышечные волокна преобладают

Это можно сделать, отдав образцы тканей в лабораторию для исследования, или самостоятельно провести тест на соотношение мышечных волокон . Рассмотрим как это делать на примере упражнения подъём гантелей на бицепс:

  • 1) необходимо подобрать такой вес гантелей, при котором Вы сможете выполнить только одно повторение этого упражнения – это будет максимальный вес
  • 2) после этого нужно отдохнуть около 15 минут и выполнить это упражнение с весом, составляющим 80% от максимального ровно столько раз, сколько получится сделать это без дополнительной помощи
  • 3) на основании полученного количества раз интерпретировать результаты
  • 4) проделать тоже самое со всеми основными группами мышц

Интерпретация результатов теста

Подводя итог, хочу сказать, что информация и типах мышечных волокон нужна Вам для того, чтобы понимать какое качество можно развить, задействуя, те или иные волокна. Так, если основная цель – развитие выносливости, то неразумно заниматься силовыми тренировками. И соответственно, выполняя монотонное кардио, Вы не сможете добиться увеличения мышечной массы.

А чтобы получать больше полезной информации каждый день, подпишитесь на наш .

1. Мышцы.

Мышцы или мускулы (от лат. musculus - мышца) - органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.

мышцы

1.1 Функции и строение.


мышц

Основная функция скелетных мышц человека – перемещение тела в пространстве. Следует помнить, что мышцы при сокращении тянут, а не толкают (мышца резина, а не пружина) – это единственный вид сокращения мышцы.

Строение мышцы:

  • Мышцы крепятся к кости или к другой мышце с помощью сухожилья.
  • Мышца находиться в оболочке – фасции.
  • Мышца состоит из пучков мышечных волокон.
  • Пучок мышечных волокон состоит мышечных волокон.
  • Мышечное волокно состоит из миофибриллы и ядра.
  • Миофибрилла состоит из оболочки, миозина и актина.

Сокращение мышцы:


  1. Мозг дает сигнал по мотонейрону к мышечному волокну, чтобы оно сокращалось.
  2. Мышца получает сигнал для сокращения и начинает сокращаться.
  3. При сокращении нити актина «скользят» между нитями миозина используя для этого энергию (АТФ).
  4. После нити актина возвращаются в исходное положение.

Мышечное энергообеспечение.

Использование запасов АТФ в мышце – АТФ в мышце хватает на доли секунд при проявлении максимального усилия.

Креатинкиназная реакция – реакция ресинтеза АТФ с помощью креатинфосфата + АДФ, данный источник энергии хватает на несколько секунд (8-10 секунд). Включается практически моментально и быстро выключается, на смену ему приходит анаэробны гликолиз.

Анаэробный гликолиз – процесс образования АТФ с глюкозы без участия кислорода. Активно включается в работу через несколько секунд и длительность порядка 40-80 секунд. После 30-40 секунд из-за закисления клетки анаэробный гликолиз постепенно начинает выделять меньшее количество АТФ и на его смену приходит Аэробный гликолиз.

Аэробный гликолиз – процесс образования АТФ с глюкозы с участием кислорода. Основным источником энергии становиться примерно после 80 секунд активной работы. После истощения запасов гликогена основной источник энергии - жирные кислоты, а на смену аэробному гликолизу приходит окисление жирных кислот. В силовом тренинге не используется.

Окисление жирных кислот – процесс преобразования жирных кислот в АТФ с использованием кислорода. В силовом тренинге не используется.

От автора: Понимать процессы энерообеспечения мышц очень важно. Именно по энерообеспечению различают виды мышечной работы и развитие физических качеств. Так за силовые качества отвечает больше креатинкиназная реакция, за силовую выносливость – анаэробный гликолиз. А за выносливость аэробный гликолиз и окисление жирных кислот.

Поэтому при силовой работе на 1 повтор работает в основном креатинкиназное энергообепечение, и истощаются запасы собственного АТФ в мышце. На 2-6 повторов, если вложиться в 10 секунд, работает именно креатинкиназное энерообеспечени и частично анаэробный гликолиз. На 6-20 повторов большую часть энергии дает именно анаэробный гликолиз, так как креатинкиназное энерообеспечение отключиться примерно через 4-8 повторов. Аэробный гликолиз практически не участвует силовой работе, а только при тренировке выносливости, обычно он активно включается в энерообеспечение только после истощения анаэробного энерообепечения, что примерно через 40-80 секунд, в зависимости от степени нагрузки. А вот окисление жирных кислот включается только после практически полного истощения запасов гликогена, данный процесс наступает в зависимости от степени нагрузки и запасом гликогена.

Отдельно следует сказать, что такая последовательность включения различных систем энергообеспечения актуально только, если нагрузка будет 100%. Если давать не максимальную нагрузку, в таком случае могут включаться не все двигательные единицы (не все части мышцы) одновременно, а только часть. И в такой ситуации каждая система энергообеспечения может работать намного длительней, так как к работе будут подключаться «новые и свежие» двигательные единицы, когда старые, которые выполняли работу, уже «устали».

1.2 Виды мышечных волокон.


мышц

Основные классификации мышечных волокон:

  • Белые и красные мышечные волокна;
  • Быстрые и медленные мышечные волокна;
  • Гликолитические, промежуточные и окислительные мышечные волокна;
  • Высокопороговые и низкопороговые мышечные волокна.

Белые и красные мышечные волокна.

Первая классификация – по цвету. Это классификация по наличию пигмента миоглобина в саркоплазме мышечного волокна. Миоглобин красного цвета и он участвует в переносе кислорода к мышечной клетке. Чем больше кислорода требуется клетке, тем больше поступает миоглобина - волокно более красное. Когда меньше кислорода - волокно более светлое, от чего – белое. Также красные мышечные волокна имеет большее число митохондрий, чем белые, из-за большого потребления кислорода.

Белые мышечные волокна:

  • Миоглобина – мало.
  • Митохондрий – мало.
  • Потребление кислорода – малое.

Красные мышечные волокна:

  • Миоглобина – много.
  • Митохондрий – много.
  • Потребление кислорода – большое.

Быстрые и медленные мышечные волокна.

Вторая классификация - по скорости сокращения. Быстрые и медленные мышечные волокна классифицируются по скорости сокращения и активности фермента АТФ-азы. Фермент АТФ-аза участвует в образовании АТФ и соответственно в сокращении мышцы. Когда чем более активный фермент, тем быстрей синтезируется АТФ и мышца снова готова сокращаться.

Быстрые мышечные волокна:

  • Скорость сокращения мышечного волокна более высокая.
  • Активность фермента АТФ-аза более высокая.

Медленные мышечные волокна:

  • Скорость сокращения мышечного волокна более низкая.
  • Активность фермента АТФ-аза низкая.

Гликолитические, промежуточные и окислительные мышечные волокна.

Третья классификация – по энергообеспечению. Для получения энергии мышечные волокна используют жирные кислоты (жиры) и глюкозу (углеводы). Жирные кислоты с помощью окисления организм превращает в АТФ с помощью окисления. Глюкозу с помощью анаэробного и аэробного гликолиза также превращает в АТФ. Поэтому в организме существует три вида различных мышечных волокон, которые используют преимущественно один из видов энергообеспечения.

Окислительные мышечные волокна (ОМВ):

  • Основной источник энергии – жирные кислоты.
  • Энергообеспечение – окисление.

Промежуточные мышечные волокна (ПМВ):

  • Основной источник энергии – жирные кислоты, глюкоза.
  • Энергообеспечение – окисление, гликолиз.
  • Количество митохондрий – среднее количество.

3. Гликолитические мышечные волокна (ГМВ):

  • Основной источник энергии – глюкоза.
  • Энергообеспечение – гликолиз, преимущественно анаэробный.

Отдельно следует поговорить о ПМВ. Данный тип мышечных волокон очень хорошо адаптируется к нагрузке, в отличие от ОМВ и ГМВ. При длительных тренировках данные мышечные волокна могут приобретать больше признаков ОМВ или ГМВ. К примеру, если тренировать выносливость (бегать марафоны и топу подобное), в таком случае практически все ПМВ станут ОМВ, за счет увеличения количества митохондрий. При силовых тренировках МПВ перестраиваться в ГМВ, адаптируясь под соответственный вид тренировок.

Высокопороговые и низкопороговые мышечные волокна.

Четвертая классификация – по порогу возбудимости двигательных единиц (ДЕ). Двигательная единица состоит из: мотонейрона и мышечного волокна. Сокращение мышцы происходит под воздействием нервных импульсов, которые проводят нервные клетки от головного мозга к мышце, давая ей команду сокращаться.

Высокопороговые мышечные волокна:

  • Порог возбудимости – высокий (сокращаются при сильном импульсе, когда очень тяжело).
  • Скорость передачи нервного импульса – высокая.
  • Аксон с миелиновой оболочкой.

Низкопороговые мышечные волокна:

  • Порог возбудимости – низкий (сокращаются при слабом импульсе.).
  • Скорость передачи нервного импульса – низкая.

Объединение классификаций.

Белые быстрые высокопороговые гликолитические мышечные волокна (далее вГМВ):

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз.
  • Порог возбудимости – высокий.
  • Аксон – с миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – заложено генетикой (это не факт, так как сейчас есть теория, по которой происходит миелинизация мотонейрона от тренировочной нагрузки).

Данный вид мышечных волокон, у людей, не занимающихся спортом, практически некогда не принимает участие в сокращении мышцы. Данные мышечные волокна включаются в работу только в экстремальных условиях на очень короткое время. У спортсменов занимающихся анаэробными видами спорта данные мышечные волокна активно принимают участие в сокращении при пиковых нагрузках (90-100% от ПМ, обычно это 1-3 повтора).

Белые быстрые гликолитические мышечные волокна (далее ГМВ):

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз, частично аэробный.
  • Порог возбудимости – средний (ниже вГМВ, выше ПМВ).
  • Аксон без миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – различное (ПМВ превращаются в ГМВ при силовых тренировках).
  • ГМВ основа всей мышечной массы. Даже если у человека преобладают ОМВ по количеству, весь основной объем мышцы будет за счет именно ГМВ, так как эти мышечные волокна намного больше в объеме всех остальных. ГМВ включаются в работу практически во всех силовых упражнениях.

Промежуточные (могут быть как белые, так и красные) мышечные волокна (далее ПМВ).

  • Цвет – белый, красный.
  • Скорость сокращения – низкая, высокая (некоторые исследования подтверждают, что активность фермента АТФ-азы не может меняться от тренировки, потому возможно ПМВ, которые превратились в ГМВ остаются медленными).
  • Основное энергообеспечение – анаэробный гликолиз, аэробный гликолиз, окисление.
  • Порог возбудимости – средний (ниже вГМВ, ГМВ, выше ОМВ).
  • Количество митохондрий – средне (зависит от тренированности человека).
  • Количество мышечных волокон в организме – различное, (много у нетренированных людей, у тренированных ПМВ превращаются в ГМВ или ОМВ).

ПМВ это что-то усредненное между ГМВ и ОМВ, они использую энергообеспечение как и ОМВ, так и ГМВ. Особая способность этих мышечных волокон – приобретение признаков ОМВ или ГМВ в зависимости от нагрузки. Если идет анаэробная нагрузка и нужен больше гликолиз – ПМВ превращаются в ГМВ. Если человек получает аэробную нагрузку – ПМВ превращаются в ОМВ.

Красные медленные окислительные мышечные волокна (далее ОМВ):

  • Цвет – красный.
  • Скорость сокращения – низкая.
  • Основное энергообеспечение – окисление.
  • Порог возбудимости – низкий.
  • Аксон – без миелиновой оболочкой.
  • Количество митохондрий – много.
  • Количество мышечных волокон – различное, промежуточные мышечные волокна превращаются в ОМВ при тренировках на выносливость.

1.3 Адаптационные процессы в мышцах.


мышцы

Наш организм очень сложный, в нем происходит невероятное количество различных процессов каждую долю секунды, для поддержания жизнедеятельности. Данные процессы является адаптацией организма к раздражителям внешней среды. Далее будут описываться основные адаптационные изменения в мышцах при тренировках.

От автора: Процесс гиперплазии (делении мышечной клетки) не будет рассмотрен, связано это с тем, что данный процесс научно не обоснован, а все научные доводы крайне сомнительные. Поэтому будем рассматривать то, что хорошо известно и проверено на практике.

Для начала следует разобраться в процессе роста мышечной клетки. Как и почему она увеличиваться в размерах и что для этого нужно. Наш организм все время находится в гомеостазе (постоянстве), и любой стресс для него – проблема, с которой нужно справиться. Организм не любит стресса, он любит постоянство, а тренировка – стресс. Справляться организм будет следующий образом – создавать запас «прочности» для будущего внезапного стресса, а рост мышечной клетки и есть тот запас прочности для будущего стресса. Любой тренировочный стресс (стресс от силовой тренировки) для мышцы запускает мышечный рост, но для мышечного роста нужно полноценное восстановление.

Рост мышечных клеток.

Для того, чтобы мышечная клетка могла полноценно адаптироваться под нагрузку, своим ростом, есть ряд факторов, которые должны присутствовать в клетке (иногда их так и называют – факторы роста).

Факторы роста:

  • Аминокислоты – основной элемент построения всех белков животных и растительных организмов.
  • Анаболические гормоны – тестостерон, гормон роста и инсулин.
  • Свободный креатин – азотсодержащая карбоновая кислота.
  • Ионы водорода – простейший двухатомный ион H2+.

Все эти элементы должны присутствовать в клетке, для ее полноценного роста. Причем важна именно определенная концентрация каждого элемента, поэтому следует все разобрать подробнее.

Аминокислоты являются основным строительным материалом для полноценного роста мышечной клетки. Так как сократительная часть клетки, которая подвержена росту, состоит преимущественно из белков. При этом если аминокислот будет избыток, те аминокислоты, которые организм не сможет использовать на строительный материал, будут использоваться в качестве источника энергии. Поэтому следует понимать, что слишком большой избыток аминокислоты не приведет к ускорению мышечного роста.

Анаболические гормоны , а в первую очередь именно тестостерон, одни из важнейших факторов для мышечного роста. Именно тестостерон после попадания в клетки воздействует на ДНК клетки и запускает мышечный рост.

  • Тестостерон – воздействует на ДНК, повышает анаболизм.
  • Гормон роста – воздействует на рецепторы (трансмембранный белок), и повышает анаболизм.
  • Инсулин – воздействует на рецепторы мембраны клеток, улучшая проницаемость клеточных мембран, улучшает поступление аминокислот, глюкозы и микро и макроэлементов в клетку.

Свободный креатин появляется благодаря мышечному сокращению. При мышечном сокращении ресинтез АТФ происходит благодаря запасам креатинфосфата (Креатинкиназная реакция), что ведет к появлению свободного креатина. При этом повышенная концентрация свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах.

Ионы водорода активно появляются при разрушении молочной кислоты на лактат и ионы водорода. Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, облегчению доступа гормонов к ДНК.

Следует понимать, что ионы водорода при большой концентрации могут разрушать мышечные клетки, поэтому их концентрации должна быть умеренной. В данном случае больше – не значит лучше.

С современными знаниями и препаратами человек может контролировать все четыре фактора отвечающие за мышечный рост. Концентрацию аминокислот можно поддерживать правильным питание богатым полноценными аминокислотами. Не смотря на то, что уровень тестостерона заложен генетически, и на него повлиять крайне сложно, силовые тренировки способствуют лучшему поступлению тестостерона в кровь. Также и свободный креатин, и ионы водорода способны выделяться только при силовых тренировках.

Отличия тренировок для «натурального» роста мышц и для «химического».

Пока не отошли далеко от темы, нужно рассказать, чем отличается гипертрофия при натуральных тренировках и при «химических».

Натуральному спортсмену более важно выделить большое количество свободного креатина, но при этом количество ионов водорода должно быть не в очень большом количестве, так как они будут сильно разрушать мышечную клетку. Также тестостерон не имеет такого большого значения, как при «химическом» тренинге, так как его концентрация не большая, и соответственно не нужно так много ионов водорода. Поэтому весь тренинг для набора мышечной массы должен быть построен преимущественно на креатинфосфатном энергообеспечении, для поднятия большей концентрации свободного креатина. В связи с этим оптимальное время для выполнения упражнений 8-10 секунд. Но, естественно необходимо и выполнять упражнения в диапазоне 20-30 секунд, при котором работает анаэробный гликолиз, для увеличения концентрации ионов водорода.

При этом «химикам» необходимо наоборот работать более в анаэробном гликолизе и стараться максимально увеличить концентрацию ионов водорода, чтобы «открыть» доступ тестостерону к ядру клетки. Поэтому становиться понятно, почему профессионалы так любят «пампинг». Во-первых, при «пампинге» сильно увеличивается кровоток, и поступают гормоны и аминокислоты к клетке. А во-вторых – «пампинг» очень сильно закисляет мышцы, идут большие энерготраты и повышается количество молочной кислоты, соответственно и ионов водорода. «Химикам» не следует сильно бояться закисления и разрушения мышечной клетки, так как положительный анаболизм от гормонов приведет к существенному росту мышечной клетки.

Теория мышечного роста, которые нынче не актуальны.

Теория разрушения – устаревшая теория, по которой микротравмы миофибрилл ведут к их суперкомпенсаи и росту.

Суть данной теории заключается в том, что при тренировке идут микротравмы мышечного волокна, которые при восстановлении увеличиваются в объеме с неким запасом прочности, тем самым увеличиваются в объеме. Обычно адепты данной теории рекомендуют тренироваться так, чтобы на следующий день была крепатура (мышечная боль), если же боли после тренировки нет, значит, тренировка несла слабое раздражение и была не эффективна. На самом деле данная теория не верна, по той причине, что многие не понимают причину пост тренировочной боли.

Пост тренировочная боль и правда возникает из-за микротравм миофибрилл, но сама боль не ведет к росту мышечной клетки. Крепатура возникает из-за различной длинны миофибрилл, которые сокращаясь не равномерно травмируются. После определенного тренировочного стажа все миофибриллы становятся равномерной длинны, что приводит к распределению нагрузки на них равномерно, поэтому микротравмы не происходят, и пост тренировочной боли практически нет. Но, человек все равно продолжает набирать мышечную массу.

От автора: « No pain no gain » - старое американское выражение, которое переводиться как: «Без боли нет роста». Было очень популярно в Америке, во времена золотой эры бодибилдинга. В то время как раз теория разрушения была актуальна, и все тренировались в очень больших объемах, чтобы максимально сильно микротравмировать мышцы и на следующий день получить мышечную боль.

От автора: Были исследования икроножных мышц олимпийских марафонцев непосредственно после забега. И исследования показали сильные повреждения икроножных мышц (большое количество микротравм миофибрилл), но при этом их мышцы не увеличиваются в размерах, а только становятся выносливее, за счет роста количества митохондрий.

Саркоплазматическая гипертрофия – увеличение размеров мышцы за счет роста саркоплазмы (не сократительного элемента клетки).

Даная теория ошибочная, саркоплазма занимает всего 10% от общей массы мышечной клетки, а миофибриллы практически 90%. И при этом большая часть саркоплазмы занимает именно гликоген. Естественно по мери тренированности запасы гликогена в мышцах увеличиваться, но их увеличение не существенное и сильно повлиять на размер мышцы не может.

Поэтому при силовом тренинге основной рост мышечной клетки идет именно за счет увеличения миофибрилл – сократительных элементов клетки, не сократительные элементы (саркоплазма) практически не влияют на размер мышцы.

Также адепты теории саркоплазматической гипертрофии часто используют «пампинг», аргументируя это тем, что большие энерготраты при «пампинге» ведут к истощению запасов гликогена и увеличению саркоплазмы. И «пампинг» действительно работает, в прошлой главе было подробно рассказано, но он ведет к миофибриллярной гипертрофии, а не саркоплазматической.

От автора : Все циклические виды спорта имеют намного больше запасы гликогена, чем тяжелоатлеты, так как используют преимущественно гликолиз. Использование гликолиза и истощение запасов гликогена ведет к суперкомпенсации по гликогену, в то время как тяжелоатлеты используют креатинфосфат как энергообеспечение, и запасы гликогена у них меньше. Поэтому саркоплазма более гипертрофирована (из-за запасов гликогена) у циклических видов спорта, но при этом тяжелоатлеты все равно имеют большую мышечную массу.

1.4. Виды мышечных сокращений и способы выполнения силовых упражнений.


мышцы

Виды работы мышцы:

  • Статическая (удерживающая) работа – мышца не меняет длины под нагрузкой.
  • Динамическая преодолевающая работа – мышца укорачиваться под нагрузкой.
  • Динамическая уступающая работа – мышца растягивается под нагрузкой.

Виды мышечных сокращений:

  • Изотоническое сокращение – мышца укорачивается при постоянной нагрузке (такое бывает только в лабораторных условиях).
  • Изометрическое сокращение – напряжение возрастает, длина мышцы не меняется.
  • Ауксотоническое сокращение – напряжение мышцы изменяется по мере ее укорочения.

Примеры:

  1. Если остановить штангу в любой точки амплитуды и зафиксировать – это статическая работа грудной мышцы (трицепсов и дельты) и изометрическое сокращение.
  2. Опускание штанги – динамическая уступающая работа и ауксотоническое сокращение грудных мышц, после начала выжимания штанги – динамическая преодолевающая работа и ауксотоническое сокращение.

Способы выполнения силовых упражнений.

Теперь перейдем к силовым упражнениям. Упражнения могут выполняться различными способами. Способы выполнения упражнений носят различный характер нагрузки на мышцы, задействуют разные мышечные волокна.

Амплитуда движения – это некая вылечена (длина), на которую может растянуться мышцы.

Амплитуда движения:

  • Полная, ограничения растяжением мышцы (пример: жим гантелей – амплитуда ограничена растяжением мышцы).
  • Полная, ограничения спортивным снарядом, таким как гриф, тренажер (пример: жим штанги лежа – амплитуда ограничена грифом).
  • Короткая, 1 - внутри амплитуды, на растянутой мышце (пример: жим лежа не выпрямляя локти). 2 - в полную амплитуду, но низ амплитуды чем-то ограничен (пример: жим с бруса).

Способы выполнения упражнений.

Силовой способ выполнения упражнения – классический метод выполнения упражнения.

  • – динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • – при растяжении средняя или медленная скорость, при сокращении – средняя или высокая скорость.
  • Амплитуда движения – полная, которую позволят растяжение мышцы или спортивный снаряд.
  • Наличие мышечного отказа – не обязательно (отказ может использоваться как метод повышения интенсивности).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Классический силовой способ выполнения упражнение наиболее эффективен как для набора мышечной массы, так и для развития физических качеств (силы или силовой выносливости). При этом данный метод максимально эффективен как для натурального спортсмена, так и для человека использующего допинг. Силовой способ выполнения упражнения вызывает микротравмы миофибрилл, что приводит к их суперкомпенсации. Так и при большом количестве повторов и подходов может закислять (молочной кислотой) мышечное волокно, что ведет к разрушению молочной кислоты и увеличению ионов водорода, которые способствую мышечному росту.

«Памповый» способ выполнения упражнения (pumping - от анг. накачка) – метод позволяющий ограничить доступ крови к мышечной группе, тем самым закисление мышцы идет сильнее. Основное отличие от силового метода в том, что увеличивается скорость выполнения упражнения, и сокращается амплитуда движения.

  • Вид работы мышцы и вид мышечного сокращения - динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – короткая (работа внутри амплитуды, мышца все время находиться под нагрузкой).
  • Наличие отказа
  • Скорость выполнения упражнения - при растяжении – быстро, при сокращении – быстро (в памповой манере скорость больше, чем в силовой манере).
  • Акцент на мышечные волокна – преимущественно ГМВ. Очень слабо влияет на ОМВ за счет сильного закисления мышечных волокон.

Памповый способ выполнения упражнения крайне слабо травмирует миофибриллы, связано это с тем, что чаще всего вес на снаряде слишком мал, так же большое количество повторов в меньшей степени травмирует миофибриллы, а скорей ведет к более сильному закислению клетки. Также более короткая амплитуда движения, которая частично «перекрывает» кровоток ведет к тому, что кровь не может «вымывать» молочную кислоту, лактат ионы водорода, на которую она распадается, по этой причине очень сильно закисляется мышца. Помимо этого после выполнения подхода с кровью к клетке поступает большое количество различных веществ, таких как аминокислоты, глюкоза и гормоны. Именно по этой причине пампинг так эффективен в «химическом» бодибилдинге, так как там используется большое количество анаболических гормонов, которые при доставлении их в клетки способствуют мышечному росту. В «натуральном» тренинге пампинг намного менее эффективен и используется крайне редко.

«Негативный» способ выполнения упражнения или просто «негативы» – метод позволяющийдостигнуть очень сильного мышечного истощения (отказа).

  • Вид работы мышцы и вид мышечного сокращения - динамическая уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – полная или частичная.
  • Наличие отказа – не обязательно («негативный» отказ очень травмоопасен).
  • Скорость выполнения упражнения - при растяжении – очень медленно, при сокращении – быстро с помощью (помощь обязательна).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Статический способ выполнение упражнения или просто «статика» - единственный метод выполнения упражнения, при котором нет движения снаряда, также как и «негативы» позволяет достигнуть сильного мышечного истощения (отказа).

  • Вид работы мышцы и вид мышечного сокращения – статическая (удерживающая) работа в изометрическом сокращении.
  • Наличие отказа – не обязательно.
  • Скорость выполнения упражнения – неподвижное состояние.
  • Амплитуда – нет амплитуды движения.
  • Акцент на мышечные волокна – вГМВ или ГМВ (в зависимости от времени).

Статодинамический способ выполнения упражнения – довольно новый метод, приобрел популярность благодаря профессору Селуянову. Подробнее про статодинамику будет в отдельной главе.

  • Вид работы мышцы и вид мышечного сокращения – динамическая преодолевающая и уступающая работа в ауксотоническом и изометрическом сокращении.
  • Наличие отказа – обязательно (до полного закисления и отказа).
  • Скорость выполнения упражнения - при растяжении – очень медленно, при сокращении – очень медленно.
  • Амплитуда движения – короткая (работа внутри апмлитуды).
  • Акцент на мышечные волокна – ОМВ.

Негативный и статический способ выполнения упражнения крайне плохо себя зарекомендовал как тренировочный метод для набора мышечной массы. Связано это с тем, что «негативы» и «статика» более эффективны для тренировки суставно-связочного аппарата, микротравмируют сухожилья, что ведет к суперкоменсации. Во-первых - при «негативах» и «статике» небольшие энерготраты, что не ведет к выделению молочной кислоты. А во-вторых - идет большая нагрузка на мышцы, что очень сильно увеличивает шанс травмировать мышечное волокна, сухожилье или суставно-связочный аппарат, поэтому данный метод не используется в бодибилдинге, пауэрлифтинге или тяжелой атлетике. Из всего силового спорта, данные способы выполнения упражнения прижился только в армспорте, где суставно-связочный аппарат и сухожилья имеют большее значение, нежили мышцы.

1.5 Виды мышечного отказа.

Мышечный отказ – состояние мышц, когда они больше не способны справляться с нагрузкой.

Виды мышечного отказа:

  • Преодолевающий отказ (динамика)– когда больше невозможно поднять вес (мышцы не могут сократиться).
  • Статический отказ (статика)– когда больше невозможно удерживать вес (мышца не может сокращаться в статическом режиме и начинает расслабляться).
  • Уступающий отказ (негативы) – когда больше невозможно медленно опускать вес (мышца не может справляться с весом даже при растяжении, а не сокращении).

Пример выполнения упражнение с наступлением всех трех видов отказа: Человек выполняет жим штанги лежа, при этом выжимает последний раз и больше не может выполнить повторение (наступал преодолевающий отказ ). После чего удерживает вес на выпрямленных руках (важно не выпрямлять полностью руки, чтобы нагрузка не уходила в суставы, а оставалась на мышцах), и через некоторое время уже не способен удерживать вес, штанга начинает опускаться (наступил статический отказ ). При опускании штанги человек может еще прикладывать усилия для ее замедления (чтобы штанга опускалась медленнее с одинаковой скоростью), после штанга начинает ускоряться, даже при максимальных усилиях ее остановить (наступил уступающий отказ) .

Физиология мышечного отказа.

Преодолевающий отказ (динамика) – может наступать по двум причинам:

  • Мышца закислена и больше не может сокращаться.

Статический и уступающий отказ (статика и негативы) – также может наступать по двум причинам.

  • Истощена энергетика и мышцы больше не способны сокращаться.
  • Ограничение работы мышцы сухожильным веретеном и органом Гольджи.

Уточнение: Сухожильное веретено и орган Гольджи отвечает за напряжение и растяжение мышцы. В тех случаях, когда мышца максимально растянута или напряжение приходит своему пику – сухожильное веретено и орган Гольджи могут дать сигналы на мотонейроны, чтобы те переставали иннервировать мышцы (стимулировать сокращение). Это необходимо для того, чтобы мышца при напряжении не порвалась или не оторвалось сухожилье от кости.

Использование отказа в тренировочном процессе.

Мышечный отказ является одним из методов повышения интенсивности тренировки. Поэтому чаще всего используется как дополнительный тренировочный метод. Так как сильный мышечный отказ может сильно удлинить время восстановления после нагрузки. Несомненно, для последующего восстановления важен и общий тренировочный объем (сколько было отказных подходов), но чаще всего при использовании метода отказных повторов, тренировочный объем не большой.

Время для полноценного отдыха мышечной группы (и других систем организма) после отказных повторений:

  • Преодолевающий отказ – от 7-14 дней. Классический динамический отказ очень сильно «микротравмирует» миофибриллы (сократительные элементы мышечной клетки), также происходит существенная нагрузка на суставно-связочный аппарат и нервную систему.
  • Статический отказ – от 3 до 21 дня. Воздействие на организм статического отказа зависит от времени. Чем больше время перебивания под нагрузкой, тем соответственно меньше использованный вес. Чем больше вес – тем больше нагрузка на суставно-связочный аппарат и дольше восстановление. Также следует учитывать, используется статический отказ после динамического или отдельно.
  • Уступающий отказ – 14-28 дней. Негативный отказ самый тяжелый, он наступает в последнюю очередь и естественно нагрузка на организм от него самая большая. Уступающий отказ может наступить только после статического отказа. Нагрузка на суставно-связочный аппарат очень большая, также и на нервную систему.

От автора: Эти данные были выведены эмпирическим путем благодаря большому количеству людей, которые экспериментируют с мышечными отказами в тренировках. Некоторые данные (по преодолевающему отказу), были публикованы Селуяновым. Также и Майк Ментцер, один из основоположников отказного тренинга в бодибилдинге, рекомендовал делать отдых на мышечную группу до 14 дней, если на тренировке применялся отказной тренинг.